JBA consulting

Stonehaven Bay Coastal Flood Protection Study

SFAG Consultation

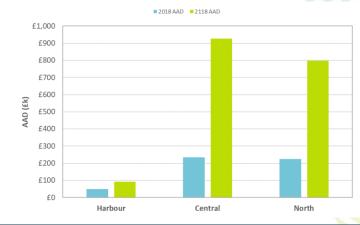
27 August 2019

Background

- SEPA's 2015 SFRA identified the requirement for a coastal flood study in Stonehaven Bay
- Aberdeenshire Council have to deliver recommendations by December 2019
- SEPA and Scottish Government review for prioritisation in 2021 2026 cycle
- **100+** flood studies are being considered nationally
- This is the **starting point** in the process

Requirements

Scottish Government / SEPA


- Risk-based approach to maximise overall reduction in risk
- "Adaptive" over "precautionary"
- 100-year appraisal period

- Aberdeenshire Council
 - Implement above based on *short*, *medium* and *long-term* recommendations

Implementation

- Assessment of flood and erosion risk in 2018 and 2118
- Division of study area in to 3 primary benefit zones
- Development options for **each zone** (adaptive and precautionary)
- Appraisal of options for **each zone** (adaptive and precautionary)
- Development of preferred option for entire bay
- Recommendations for short, medium and long-term

Reason for meeting

- JBA consulting
- Outcomes of initial appraisal were presented at public meeting on 13 June 2019
- Highlighted inconsistency with the description of the Adaptive recharge option in the central benefit zone
- Details challenged by public and SFAG due to the raising of the existing sea wall at the rear of the beach
- Aberdeenshire Council instructed additional design work to investigate concerns

Adaptive recharge option

4.70mOD

ASSUMED EXISTING PROFILE

EXISTING SEAWALL

RECURVE REMOVED

PROMENADE/CREST

FREE DRAINING COMPACTED FILL

200mm BRUSHED CONCRETE FOOTPATH 150mm HYDRAULICALLY BOUND SUB-BASE

DETAIL 1

Scale 1:50

67060 4706 SEE DETAIL 1 10000 4 00mOD (1 IN 200 EXTREME REACH PROFILE) (LONG-TERM REQUIRED DEFENCE PROFILE) WATER LEVEL YEAR 2118) I NEW SHINGLE BEACH 3.30mOD (1 IN 200 EXTREME 4.50mOD 470mOD WATER LEVEL YEAR 2018 10 NEW SHINGLE BEACH 2.07mOD (MHWS) 10 1.17mOD (MHWN) 14 0.19mOD (MSL) 1 in 200 year design standard over 100 years ECTION A BEACH DETAILS. LENGTH (M) 740 CROSS SECTION AREA (M2) 74.30 SECTION A-A ESTIMATED VOLUME (M3) 55000 5-YEAR RECHARGE (M3) Scale 1:100 10300 2021 NEW PRECAST SEA WALL Beach crest @ 4.5 mODN and 10m wide 5.70mOD NEW PROMENADE NEW RAISED REGRADED INTO EXISTING PROMENADE

- 1:10 slope
- Wall crest to 5.7 mODN (1m) •
- Promenade raised

2050

Beach crest @ 4.5 mODN and 20m wide

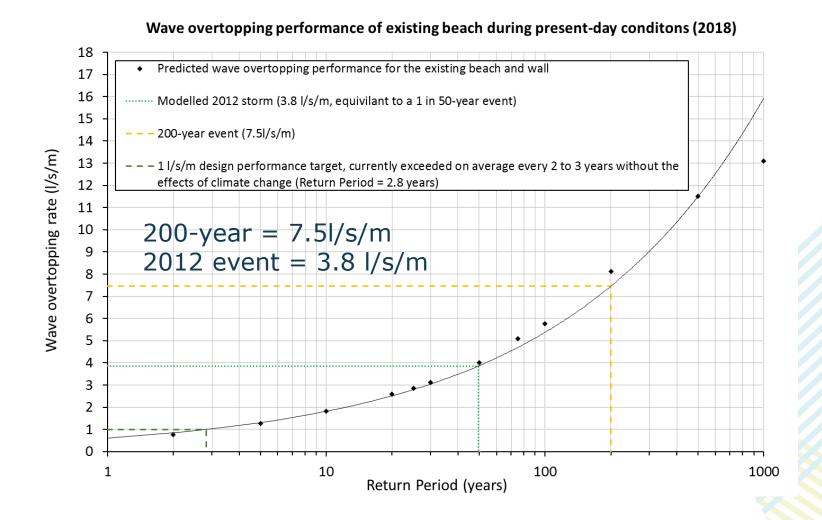
SFAG and public concerns

JBA consulting

- Raising of the existing wall was not communicated clearly
- This will be detrimental to the aesthetics of the bay and obscure views
- How was the overtopping performance of the beach assessed?
- Why was a larger initial beach not considered?

 Aberdeenshire Council instructed further design work with the aim of better understanding the performance of the beach

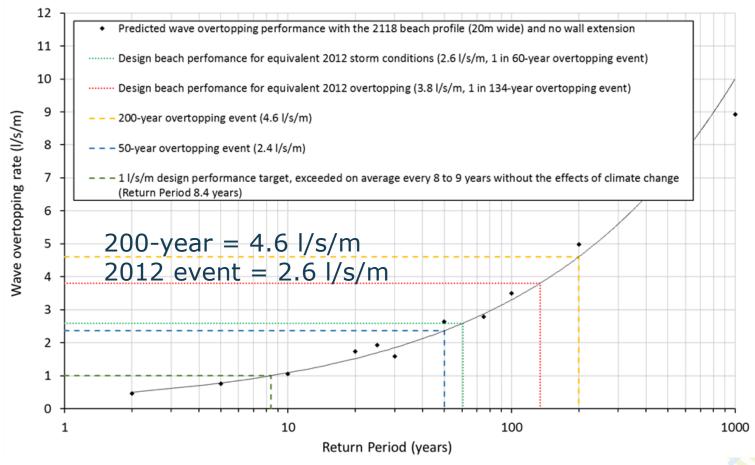
Further design work


- Wave overtopping performance using EurOtop NN
- Wave overtopping performance using empirical methods

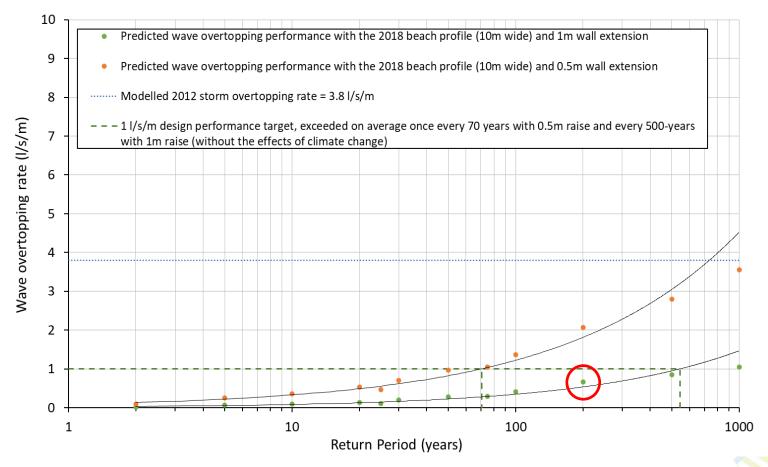
JB/

consultina

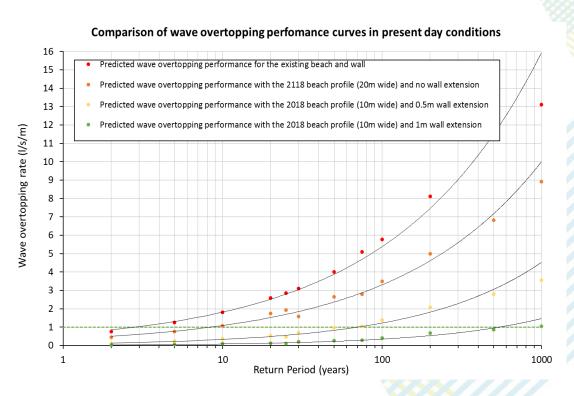
- Spatial distribution of wave overtopping volume
- Estimates of extreme wave runup height
- Numerical modelling in XBeach G
- Following conditions considered
 - **2018 200-year** $H_s = 1.83$ m, $Tm_{-1,0} = 8.73$ s, SWL = 3.02 mODN
 - **2012 event** $H_s = 1.67$ m, $Tm_{-1,0} = 9.64$ s, SWL = 2.74 mODN
 - Design standard = 1 l/s/m


EurOtop ANN - Existing Beach

EurOtop ANN - Long-term beach profile without a wall raise

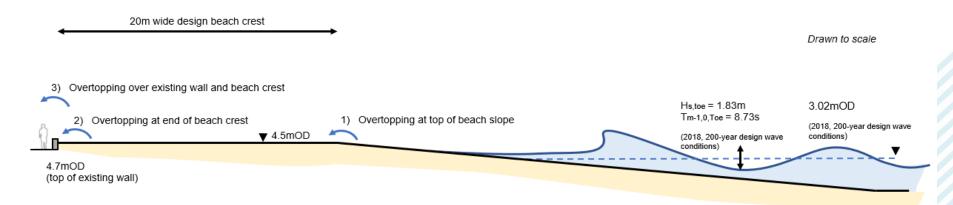


Wave overtopping performance of 2118 beach design (20m width) without a wall extension during present-day conditons (2018)

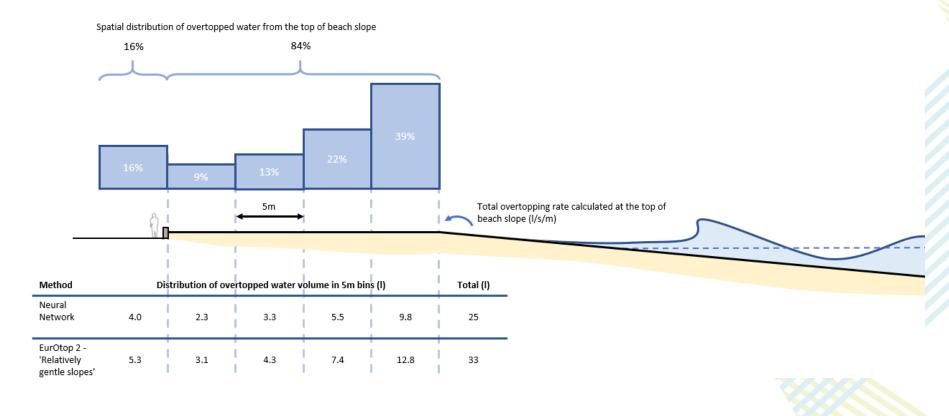

EurOtop ANN - Medium-term beach profile with a 0.5m and 1m wall raise

Wave overtopping performance of 2018 beach design without a 0.5m and 1m wall extension during present-day conditons (2018)

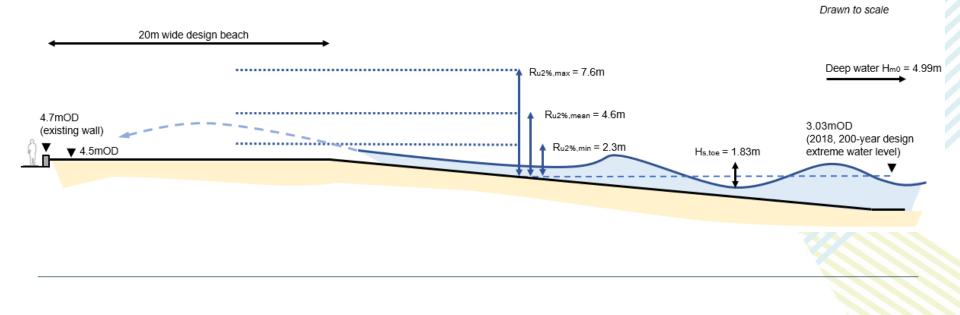
Summary Overtopping Rates


Scenario Standard of **Protection for** wave overtopping design performance target (1 l/s/m) Existing beach 2-3 year and wall 2118 beach 8-9 year (20m wide) and no wall 2018 beach 70 year (10m wide) and 0.5m wall raise 2018 beach > 200 year (10m wide) and 1m wall raise

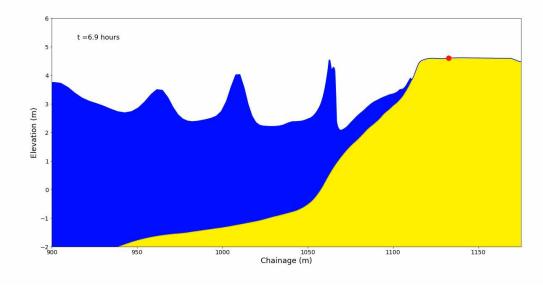
Empirical Methods vs ANN


Long-term design beach profile with existing sea wall, as the base for the empirical wave overtopping calculations, with the three overtopping locations specified

Location of Overtopping	OT Rate (l/s/m)	
	EurOtop II – relatively gentle slopes	Artificial Neural Network
1. Top of beach slope	33.0	25.0
2. End of beach crest	24.0	5.5
3. Top of existing sea wall	11.5	4.6


Spatial Distribution of Overtopping

Long-term design beach profile with existing sea wall and the resulting spatial distribution of wave overtopping volumes


Run-up

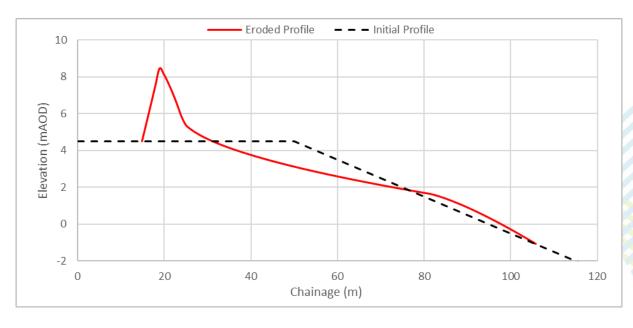
- Six methodologies were tested to calculate run-up
- 200-year runup heights range from 2.3 to 7.6m
- Mean is 4.6m, resulting in a level of **7.63 mODN**
- Current wall crest is 4.7 mODN

XBeach-G Modelling

- EurOtop methods are empirical
- Treat the design beach as "fixed defence"
- Beach will respond naturally to wave conditions
- Overtopping rates will vary

XBeach-G

 Morphodynamic modelling of the beach response to extreme events


JR

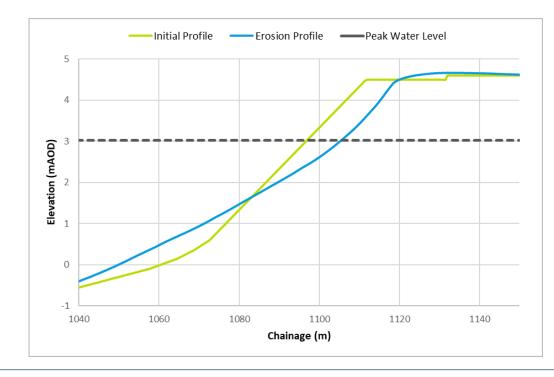
consultina

- Fixed profile and dynamic profile modelled for the 200-year design conditions
- Estimation of overtopping rates whilst accounting for the response of the profile
- Fixed profile and dynamic profile also modelled for the 2012 storm event to compare overtopping rates

XBeach-G – Response mechanism

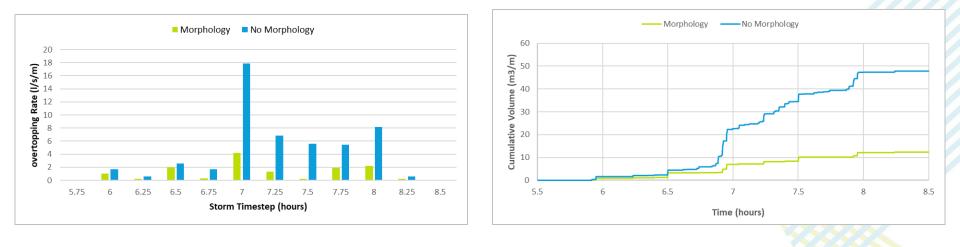
- Creation of large berm landward of crest
- Erosion of upper beach
- Deposition below SWL
- Tested in Shingle B

XBeach-G – Model Setup

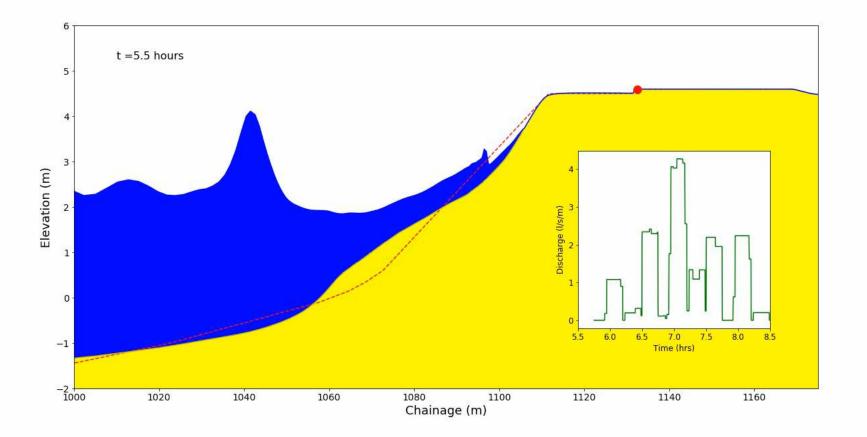

- Offshore wave climate from SWAN wave transformation model of the whole bay at location of the wave buoy
- 1D "flume" likely overestimates wave conditions reaching the beach
- Variance in water surface elevation was extracted and used to calculate nearshore H_s

$$H_{m0} = 4\sqrt{var_{zs}}$$

• The offshore wave heights were reduced by 45%

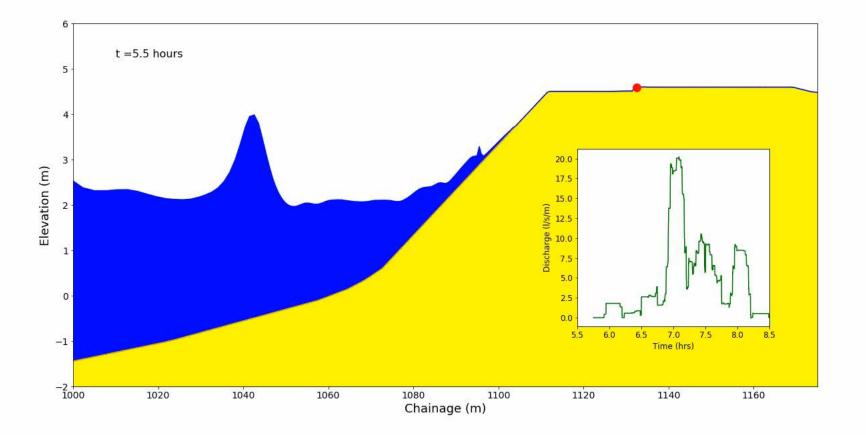

XBeach-G – 200 year Results

- 7m retreat of crest (30%)
- 0.2m sediment in front of wall
- 0.33 m³/m transported onto the path and lost from the beach



XBeach-G – 200 year Results

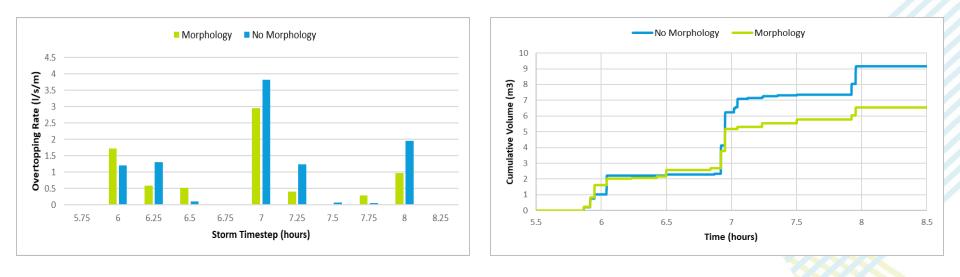
- Highest overtopping rate for fixed profile = **17.9 l/s/m**
- Highest overtopping rate for dynamic profile = **4.2 l/s/m**
- Exceed design standard overtopping rate of **1 l/s/m**



XBeach-G – Dynamic Profile

JBA consulting

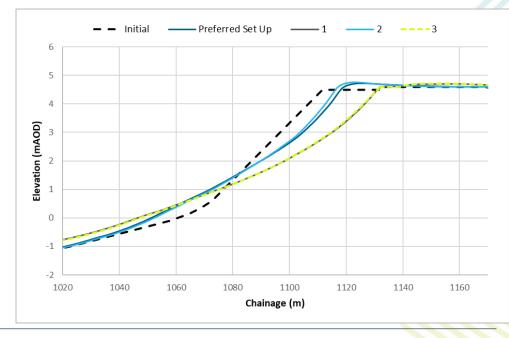
XBeach-G – Fixed Profile



JBA consulting

XBeach-G – 2012 Results

JBA consulting


- Highest overtopping rate for fixed profile = **3.8 l/s/m**
- Highest overtopping rate for dynamic profile = **3.0 l/s/m**
- Better than 200-yr but fails to meet design standard of 1.0 l/s/m

XBeach-G - Sensitivity Tests

- 1. Making no modification to the wave conditions at the boundary
- 2. Increasing the hydraulic conductivity of the beach
- 3. Combination of 1 and 2

- OT rates range from 2 177 l/s/m
- Crest retreat ranges from 5 20m

XBeach-G - Summary

- Flow rates comparable to EurOtop II and ANN wave overtopping rates for the fixed profile model
- The dynamic profile overtopping rates are significantly lower but still exceed the desirable limit of 1 l/s/m
- Around 7m of crest width (30%) is potentially lost during a 200year storm event
- Very sensitive to model assumptions
- Requires calibration / validation for further design work

Conclusions and Recommendations

- If the 20m beach crest is built in present day conditions, based on ANN, the 1 l/s/m wave overtopping standard would be exceeded every 8-9 years.
- Raising the wall provides a larger efficiency in reducing overtopping than is achieved by widening the beach .
- Alternative methods of calculating overtopping rates provide even higher estimates and support level of risk.
- Simulating morphological response is shown to reduce rates but not below design standard.
- Design standard could be reduced but would caution against due to proximity of population and vulnerability. 2012 impact can be used for context.
- Recommend the medium-term design of beach recharge scheme including raising the existing wall.

What next?

- Study and it's recommendations will be prioritised by SEPA / Scottish Government.
- Scheme my be *funded*, *more design work* undertaken or *go no further*.
- In further phases the design will be optimised with the aim of maximising the efficiency of the beach as the primary defence along the entire section.
- The design presented here will be starting point for any future work.
- This is a good start We have demonstrated a strong case for investment and that several solutions can be implemented